
Foundational Lecture:
Workload Properties, Roofline

Model, and Measurements

1/9/19
University of California, Santa Cruz

CMPE 293: Programmable Hardware Accelerators
https://cmpe293-winter19-01.courses.soe.ucsc.edu

Scott Beamer
sbeamer@ucsc.edu

https://cmpe293-winter19-01.courses.soe.ucsc.edu

Motivation for Measuring Workload
Lord Kelvin 1883

If going to specialize hardware for workload, better
understand characteristics of workload well

• Need workload properties to exploit for efficiency

• Understand workload’s need for flexibility

�2

I often say that when you can measure what you are speaking
about, and express it in numbers, you know something about it;
but when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfactory kind; it
may be the beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science, whatever the matter
may be. https://en.wikiquote.org/wiki/William_Thomson

Topics for Today

Goal: Provide background to appreciate
many of the papers for this course

Workload characterization considerations

Types of parallelism

Memory hierarchy challenges

Roofline Model

Workload characterization methods

�3

Challenges Summarizing Workload

There are many dimensions to analyze a
workload from, so typically impractical to
measure (or present) all of them

Need to summarize most relevant results

• What matters most? (significance)

• How will results be used? (context)

• “Workload has high X” - Relative to what?

�4

Summarizing Sanely

In addition to qualitative statements, provide
measurements too

Understand consumers of characterization

• What do they want to learn from it?

Iterate on characterization with consumer

• Are claims supported by measurements?

• Alternative explanations?

• Other things to measure?

�5

General Things to Look For

Common traits across target workload

• especially if different from general
purpose workloads

Underutilized resources can be scaled
down, or at least hint bottlenecks nearby

Bottlenecks are a saturated resource that
limits overall performance

�6

Ex: Graph Characterization Workload �7

LigraGAPCo
de

Roads
of USA

TwitterWeb
Crawl

Uniform
Random

Kronnecker
SyntheticG

ra
ph

Breadth-First
Search (BFS)

Single-Source
Shortest Paths

(SSSP)

PageRank
(PR)

Connected
Components

(CC)

Betweenness
Centrality

(BC)

1
1

0 -1

-1
1

1

1 0

0
1

2

0 ∞

∞
1

1
3
1

Ke
rn

el

Ex: Evaluation Platform

Target Platform
• Dual-socket Intel Ivy Bridge (E5-2667 v2)
• Socket: 8 cores with 25MB L3 cache
• Core: 3.3 GHz 2 threads
• DRAM: 256 GB DDR3-1600
Hardware performance counters
• Intel Performance Counter Monitor (PCM)
• PAPI

�8

Ex: Graph Workloads Are Diverse �9

Ex: Graph Workloads Are Diverse �9

Need suite, no single
representative workload

Only few workloads near
memory bandwidth limit

Little’s Law

Typically, latency is fixed and want to increase
throughput, so must increase parallelism

If variance in inputs, Little’s Law is for average

�10

Time

Sp
ac

e

Task C

Task A

Task B

Latency

Parallelism

Throughput = Latency
Parallelism

Parallelism = Latency x Throughput
Little’s Law

Measuring Scalability

Scaling (increasing parallel resources), can
be hindered by many factors

Strong scaling - constant problem size, so
decreasing problem/resource

Weak scaling - constant problem/resource,
so increasing problem size

Caveat: When looking at scaling curves, ask
what is relative to? Absolute performance
matters more than linear speedup curves.

�11

Example Scalability Measurements

Direction-optimizing implementation slows
down when problem not big enough

Despite non-linear scaling, still faster

�12

Strong Scaling Weak Scaling

Types of Parallelism in Processors

Instruction-level Parallelism (ILP)
• instructions are independent, but often from same

“thread”
• example uses: pipelining, superscalar
Thread-level Parallelism (TLP)
• threads have independent control flow
• example uses: multicore, multithreading
Data-level Parallelism (DLP)
• data elements are independent, but similar control flow
• example uses: SIMD extensions, vector
Memory-level Parallelism (MLP)
• memory accesses are independent

�13

Load
Buffer

Store
Buffer

Reorder
Buffer

5

6

Scheduler

Allocate/Rename/Retire
In order

OOO

IN
T

VE
C

Port 0 Port 1

MUL

ALU

FMA

Shift
ALU

LEA

Port 5

ALU

Shuffle
ALU

LEA

Port 6

JMP 1

ALU
Shift

JMP 2

ALU

ALU

DIV
Shift

Shift

FMA

Port 4

32KB L1 D$

Port 2

Load/STAStore Data

Port 3

Load/STA

Port 7

STA

Load Data 2

Load Data 3 Memory Control

Fill Buffers

Fill Buffers

μop Cache

32KB L1 I$ Pre decode Inst Q
DecodersDecodersDecodersDecoders

Branch Prediction Unit
μop

Queue

Memory

Front End

1MB L2$

FMA

Example Parallelism Uses in Skylake

ILP - can execute multiple instructions simultaneously
DLP - vector instructions operate on multiple data elements
TLP - multiple cores execute simultaneously
MLP - out-of-order allows multiple memory ops at once

�14

New Intel® Xeon® Scalable Processor Family (Skylake-SP) – Hot Chips 2017

Core Microarchitecture Enhancements
Broadwell

uArch
Skylake
uArch

Out-of-order
Window 192 224

In-flight Loads +
Stores 72 + 42 72 + 56

Scheduler Entries 60 97
Registers –
Integer + FP 168 + 168 180 + 168

Allocation Queue 56 64/thread

L1D BW (B/Cyc) –
Load + Store 64 + 32 128 + 64

L2 Unified TLB 4K+2M: 1024 4K+2M: 1536
1G: 16

Load
Buffer

Store
Buffer

Reorder
Buffer

5

6

Scheduler

Allocate/Rename/Retire
In order

OOO

IN
T

VE
C

Port 0 Port 1

MUL

ALU

FMA

Shift
ALU

LEA

Port 5

ALU

Shuffle
ALU

LEA

Port 6

JMP 1

ALU
Shift

JMP 2

ALU

ALU

DIV
Shift

Shift

FMA

Port 4

32KB L1 D$

Port 2

Load/STAStore Data

Port 3

Load/STA

Port 7

STA

Load Data 2

Load Data 3 Memory Control

Fill Buffers

Fill Buffers

μop Cache

32KB L1 I$ Pre decode Inst Q
DecodersDecodersDecodersDecoders

Branch Prediction Unit
μop

Queue

Memory

Front End

1MB L2$

FMA

Core Microarchitecture enhanced for Data center specific applications

• Larger and improved branch predictor, higher throughput decoder, larger window to extract ILP
• Improved scheduler and execution engine, improved throughput and latency of divide/sqrt
• More load/store bandwidth, deeper load/store buffers, improved prefetcher
• Data center specific enhancements: Intel® AVX-512 with 2 FMAs per core, larger 1MB L2 cache

6

Intel, Hot Chips 2017

Administrivia

Reading preferences due 1/10 @ 12PM

1st reading summary due 1/11 @ 9AM

Sign up for Piazza

Start looking for project partners and
workloads

Course website
• https://cmpe293-winter19-01.courses.soe.ucsc.edu/

�15

Improving Communication Efficiency �16

Improve
Performance

Save
Energy

Reduce
Cost

Reduce
(move less data)

• Improve data reuse
• Improve data layout

Accelerate
(move data faster)

• Utilize more bandwidth
• Build more bandwidth

Improve Communication Efficiency

Communication-centric Perspective �17

• What data is needed?
• How to arrange data?

• When is data needed?
• What is parallelizable?

Reduce
(move less data)

Accelerate
(move data faster)

Al
go

rit
hm

s
Ar

ch
ite

ct
ur

e

• Memory technology?
• Memory hierarchy?

• Link technology?
• Topology design?

Efficient Communication

Memory Hierarchy Recap

Memory is “far” (latency & energy) from CPU

Locality - property that some data is more
likely to be accessed than other data

Use cache to hold subset of data “closer”
that is likely to be accessed (exploits locality)

�18

Processor Memory

Cache

Types of Locality

Temporal Locality - likely to reuse data that
has been accessed

Spatial Locality - likely to use data near data
that has been accessed

Example access pattern: 10, 10, 0, 1, 2, 11

• (10) has temporal locality

• (0-2) and (10-11) have spatial locality

�19

Single-Core Memory Bandwidth �20

1 core (Ivy Bridge)

Single-Core Memory Bandwidth �20

1 core (Ivy Bridge)

Single-Core Memory Bandwidth �20

1 core (Ivy Bridge)

Achieved memory bandwidth
~

Outstanding memory requests

Processors Design for Spatial Locality

Cache lines/blocks are typically far larger
than a single word (64B vs 4B)

Hardware prefetchers try to predict
memory access patterns and bring data
automatically (in advance) to cache
• Prefetchers excel at streaming access

patterns but struggle with “random”

DRAM row hit - can save time and energy if
requested page already open

�21

Streaming Benefit Decreases w/ MLP �22

1 core (Sandy Bridge)

Hardware prefetcher
improves BW for streaming
by increasing parallelism

Types of Wasteful Communication �23

Refetch
poor temporal locality
• re-load previously accessed data

Overfetch
poor spatially locality
• transfer unnecessary data

Underfetch
poor request parallelism
• transfer bandwidth underutilized

Peer Instruction

Suppose you have a video decoder capable of
playing 4K @ 60Hz, and you need to upgrade it
to handle 8K @ 120 Hz. Which of the following
accelerator optimizations will work? (Y/N for
each)
• 1) Halve latency & quadruple parallelism
• 2) Reduce latency by 8x
• 3) Increase parallelism by 8x
Process: solve individually, vote individually, talk
to neighbor, agree on answer, vote as pairs

�24

Roofline Model

Visual way to understand how close
workload is to compute or bandwidth limits

�25

https://en.wikipedia.org/wiki/Roofline_model

Example Roofline �26

contributed articles

APRIL 2009 | VOL. 52 | NO. 4 | COMMUNICATIONS OF THE ACM 71

not those systems are parallel.
One advantage of using these high-

er-level descriptions of programs is
that we are not tied to code that might
have been originally written to opti-
mize an old computer to evaluate fu-
ture systems. Another advantage of the
restricted number is that efficiency-lev-
el programmers can create autotuners

for each kernel that would search the
alternatives to produce the best code
for that multicore computer, includ-
ing extensive cache optimizations.13

Table 2 lists the four kernels from
among the Seven Dwarfs we use to dem-
onstrate the Roofline model on the four
multicore computers listed in Table 1;
the autotuners discussed in this sec-

tion are from three sources:12, 28, 29

For these kernels, there is sufficient
parallelism to utilize all the cores and
threads and keep them load balanced;
see online Appendix A.2 for how to han-
dle cases when load is not balanced.

Roofline models and results. Figure
3 shows the Roofline models for Xeon,
X4, and Cell. The pink vertical dashed
lines indicate the operational inten-
sity and the red X marks performance
achieved for that particular kernel.
However, achieving balance is difficult
for the others. Hence, each computer
in Figure 3 has two graphs: the left one
has multiply-add balance as the top
ceiling and is used for Lattice-Boltz-
mann Magnetohydrodynamics (LB-
MHD), Stencil, and 3D FFT; the right
one has multiply-add as the bottom
ceiling and is used for SpMV. Since the
T2+ lacks a fused multiply-add instruc-
tion nor can it simultaneously issue
multiplies and adds, Figure 4 shows a
single roofline for the four kernels on
the T2+ without the multiply-add bal-
ance ceiling.

The Intel Xeon has the highest peak
double-precision performance of the
four multicores. However, the Roofline
model in Figure 3a shows this level of
performance can be achieved only with
operational intensities of at least 6.7
Flops/Byte; in other words Clovertown
requires 55 floating-point operations
for every double-precision operand
(8B) going to DRAM to achieve peak
performance. This high ratio is due in
part to the limitation of the front-side
bus, which also carries the coherency
traffic that can consume up to half the
bus bandwidth. Intel includes a snoop
filter to prevent unnecessary coheren-
cy traffic on the bus. If the working set
is small enough for the hardware to fil-
ter, the snoop filter nearly doubles the
delivered memory bandwidth.

The Opteron X4 has a memory
controller on chip, its own path to
667MHz DDR2 DRAM, and separate
paths for coherency. Figure 3 shows
that the ridge point in the Roofline
model is to the left of the Xeon, at an
operational intensity of 4.4 Flops/Byte.
The Sun T2+ has the highest memory
bandwidth so the ridge point is an ex-
ceptionally low operational intensity
of just 0.33 Flops/Byte. It keeps mul-
tiple memory transfers in flight by us-
ing many threads. The IBM Cell ridge

Figure 3a–3c: Roofline model for Intel Xeon, AMD Opteron X4, and IBM Cell.

Operational Intensity (Flops/Byte)

(a) Intel Xeon (Clovertown)

peak DP

+balanced
mul/add

+SIMD

+ILP

TLP only

peak stream bandwidth

+snoop filter effective

LB
M

H
D

FF
T

(5
12

3)

FF
T

(1
28

3)

snoop filter in
effective

St
en

ci
l

G
Fl

op
s/

s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

(c) AMD Opteron X4 (Barcelona)

peak DP

+balanced
mul/add

+SIMD

+ILP

TLP only

peak stream bandwidth

peak copy bandwidth

without m
emory affinity

St
en

ci
l

LB
M

H
D

FF
T

(5
12

3)

FF
T

(1
28

3)

G
Fl

op
s/

s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

(b) Intel Xeon (Clovertown)

peak DP

+SIMD

+ILP

TLP only

peak stream bandwidth

snoop filter in
effective

SpMV+snoop filter effective

+balanced
mul/add

G
Fl

op
s/

s

128

64

32

16

8

4

2

1

1/16 1/8 1/4 1/2 1 2 4 8 16

“Roofline: An insightful Visual Performance model for multicore Architectures“ (CACM 2009)

How To Measure Workloads

Qualitative approaches
• Examining source code
• Analytic models or complexity analysis
Quantitative tools
• Software Profilers
• Hardware performance counters
• Architecture Simulators
Qualitative approaches are insufficient, so should
use quantitative tools and compare
• Do measurements and models agree?

�27

Software Profilers

Intermittently pause workload and sample state

With enough samples, can get some statistics
about workload’s behavior

Examples: linux perf, gprof, gperftools, valgrind

(+) Easiest to get going

(+) Great for finding where workload spends
most of time (hot regions)

(-) Can’t measure too much of microarchitecture

�28

Hardware Performance Counters

Modern platforms typically contain extra
hardware to monitor performance events with
no overhead

Software needs to be configured to read the
counters and even control what they count

Examples: linux perf, Intel PCM, PAPI, likwid

(-) Can be very hard to use (poorly documented,
buggy, limited)

(+) Very accurate since measuring actual thing

�29

Architecture Simulator

Software that simulates architecture of
interest

Examples: gem5, sniper, ESESC

(+) Can change architecture and see
workload’s sensitivity

(+) Can measure arbitrary events

(-) Slow (but maybe speed up with FireSim)

(-) Need to verify models needed detail

�30

Characterization Summary

Iterate on characterization with its user to
make sure it makes sense (& is useful)

• Scripting reduces burden to rerun

Memory accesses are a common
bottleneck, so probably need to optimize

Keep an eye out for locality & parallelism,
as these are most often exploited by
accelerators

�31

