
Foundational Lecture: 
Workload Properties, Roofline 

Model, and Measurements

1/9/19 
University of California, Santa Cruz 

CMPE 293: Programmable Hardware Accelerators 
https://cmpe293-winter19-01.courses.soe.ucsc.edu

Scott Beamer 
sbeamer@ucsc.edu

https://cmpe293-winter19-01.courses.soe.ucsc.edu


Motivation for Measuring Workload
Lord Kelvin 1883

If going to specialize hardware for workload, better 
understand characteristics of workload well 

• Need workload properties to exploit for efficiency 

• Understand workload’s need for flexibility
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I often say that when you can measure what you are speaking 
about, and express it in numbers, you know something about it; 
but when you cannot measure it, when you cannot express it in 
numbers, your knowledge is of a meagre and unsatisfactory kind; it 
may be the beginning of knowledge, but you have scarcely, in your 
thoughts, advanced to the stage of science, whatever the matter 
may be. https://en.wikiquote.org/wiki/William_Thomson



Topics for Today

Goal: Provide background to appreciate 
many of the papers for this course 

Workload characterization considerations 

Types of parallelism 

Memory hierarchy challenges 

Roofline Model 

Workload characterization methods
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Challenges Summarizing Workload

There are many dimensions to analyze a 
workload from, so typically impractical to 
measure (or present) all of them

Need to summarize most relevant results 

• What matters most?   (significance) 

• How will results be used?  (context) 

• “Workload has high X” - Relative to what?
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Summarizing Sanely

In addition to qualitative statements, provide 
measurements too

Understand consumers of characterization 

• What do they want to learn from it?

Iterate on characterization with consumer 

• Are claims supported by measurements? 

• Alternative explanations? 

• Other things to measure?
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General Things to Look For

Common traits across target workload 

• especially if different from general 
purpose workloads

Underutilized resources can be scaled 
down, or at least hint bottlenecks nearby

Bottlenecks are a saturated resource that 
limits overall performance
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Ex: Graph Characterization Workload �7
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Ex: Evaluation Platform

Target Platform 
• Dual-socket Intel Ivy Bridge (E5-2667 v2) 
• Socket: 8 cores with 25MB L3 cache 
• Core: 3.3 GHz 2 threads 
• DRAM: 256 GB DDR3-1600 
Hardware performance counters 
• Intel Performance Counter Monitor (PCM) 
• PAPI
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Ex: Graph Workloads Are Diverse �9



Ex: Graph Workloads Are Diverse �9

Need suite, no single 
representative workload

Only few workloads near 
memory bandwidth limit



Little’s Law

Typically, latency is fixed and want to increase 
throughput, so must increase parallelism 

If variance in inputs, Little’s Law is for average
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Measuring Scalability

Scaling (increasing parallel resources), can 
be hindered by many factors

Strong scaling - constant problem size, so 
decreasing problem/resource

Weak scaling - constant problem/resource, 
so increasing problem size

Caveat: When looking at scaling curves, ask 
what is relative to? Absolute performance 
matters more than linear speedup curves.
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Example Scalability Measurements

Direction-optimizing implementation slows 
down when problem not big enough 

Despite non-linear scaling, still faster
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Strong Scaling Weak Scaling



Types of Parallelism in Processors

Instruction-level Parallelism (ILP) 
• instructions are independent, but often from same 

“thread” 
• example uses: pipelining, superscalar
Thread-level Parallelism (TLP) 
• threads have independent control flow 
• example uses: multicore, multithreading
Data-level Parallelism (DLP) 
• data elements are independent, but similar control flow 
• example uses: SIMD extensions, vector
Memory-level Parallelism (MLP) 
• memory accesses are independent
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Example Parallelism Uses in Skylake

ILP - can execute multiple instructions simultaneously
DLP - vector instructions operate on multiple data elements
TLP - multiple cores execute simultaneously
MLP - out-of-order allows multiple memory ops at once
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New Intel® Xeon® Scalable Processor Family (Skylake-SP) – Hot Chips 2017 

Core Microarchitecture Enhancements
Broadwell 

uArch
Skylake 
uArch

Out-of-order 
Window 192 224

In-flight Loads + 
Stores 72 + 42 72 + 56

Scheduler Entries 60 97
Registers –
Integer + FP 168 + 168 180 + 168

Allocation Queue 56 64/thread

L1D BW (B/Cyc) –
Load + Store 64 + 32 128 + 64

L2 Unified TLB 4K+2M: 1024 4K+2M: 1536 
1G: 16
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Core Microarchitecture enhanced for Data center specific applications

• Larger and improved branch predictor, higher throughput decoder, larger window to extract ILP
• Improved scheduler and execution engine, improved throughput and latency of divide/sqrt 
• More load/store bandwidth, deeper load/store buffers, improved prefetcher
• Data center specific enhancements: Intel® AVX-512 with 2 FMAs per core, larger 1MB L2 cache
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Intel, Hot Chips 2017



Administrivia

Reading preferences due 1/10 @ 12PM 

1st reading summary due 1/11 @ 9AM 

Sign up for Piazza 

Start looking for project partners and 
workloads 

Course website 
• https://cmpe293-winter19-01.courses.soe.ucsc.edu/
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Improving Communication Efficiency �16

Improve 
Performance

Save 
Energy

Reduce 
Cost

Reduce 
(move less data)

• Improve data reuse 
• Improve data layout

Accelerate 
(move data faster)

• Utilize more bandwidth 
• Build more bandwidth

Improve Communication Efficiency



Communication-centric Perspective �17

• What data is needed? 
• How to arrange data?

• When is data needed? 
• What is parallelizable?

Reduce 
(move less data)

Accelerate 
(move data faster)
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• Memory technology? 
• Memory hierarchy?

• Link technology? 
• Topology design?

Efficient Communication



Memory Hierarchy Recap

Memory is “far” (latency & energy) from CPU

Locality - property that some data is more 
likely to be accessed than other data

Use cache to hold subset of data “closer” 
that is likely to be accessed (exploits locality)
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Processor Memory

Cache



Types of Locality

Temporal Locality - likely to reuse data that 
has been accessed

Spatial Locality - likely to use data near data 
that has been accessed

Example access pattern: 10, 10, 0, 1, 2, 11 

• (10) has temporal locality 

• (0-2) and (10-11) have spatial locality
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Single-Core Memory Bandwidth �20

1 core (Ivy Bridge)



Single-Core Memory Bandwidth �20

1 core (Ivy Bridge)



Single-Core Memory Bandwidth �20

1 core (Ivy Bridge)

Achieved memory bandwidth 
~ 

# Outstanding memory requests



Processors Design for Spatial Locality

Cache lines/blocks are typically far larger 
than a single word (64B vs 4B)

Hardware prefetchers try to predict 
memory access patterns and bring data 
automatically (in advance) to cache 
• Prefetchers excel at streaming access 

patterns but struggle with “random”

DRAM row hit - can save time and energy if 
requested page already open
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Streaming Benefit Decreases w/ MLP �22

1 core (Sandy Bridge)

Hardware prefetcher 
improves BW for streaming 
by increasing parallelism



Types of Wasteful Communication �23

Refetch
poor temporal locality 
• re-load previously accessed data

Overfetch
poor spatially locality 
• transfer unnecessary data

Underfetch
poor request parallelism 
• transfer bandwidth underutilized



Peer Instruction

Suppose you have a video decoder capable of 
playing 4K @ 60Hz, and you need to upgrade it 
to handle 8K @ 120 Hz. Which of the following 
accelerator optimizations will work? (Y/N for 
each) 
• 1) Halve latency & quadruple parallelism 
• 2) Reduce latency by 8x 
• 3) Increase parallelism by 8x 
Process: solve individually, vote individually, talk 
to neighbor, agree on answer, vote as pairs

�24



Roofline Model

Visual way to understand how close 
workload is to compute or bandwidth limits
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https://en.wikipedia.org/wiki/Roofline_model



Example Roofline �26

contributed articles

APRIL 2009  |   VOL.  52  |   NO.  4  |   COMMUNICATIONS OF THE ACM     71

not those systems are parallel. 
One advantage of using these high-

er-level descriptions of programs is 
that we are not tied to code that might 
have been originally written to opti-
mize an old computer to evaluate fu-
ture systems. Another advantage of the 
restricted number is that efficiency-lev-
el programmers can create autotuners 

for each kernel that would search the 
alternatives to produce the best code 
for that multicore computer, includ-
ing extensive cache optimizations.13 

Table 2 lists the four kernels from 
among the Seven Dwarfs we use to dem-
onstrate the Roofline model on the four 
multicore computers listed in Table 1; 
the autotuners discussed in this sec-

tion are from three sources:12, 28, 29  

For these kernels, there is sufficient 
parallelism to utilize all the cores and 
threads and keep them load balanced; 
see online Appendix A.2 for how to han-
dle cases when load is not balanced. 

Roofline models and results. Figure 
3 shows the Roofline models for Xeon, 
X4, and Cell. The pink vertical dashed 
lines indicate the operational inten-
sity and the red X marks performance 
achieved for that particular kernel. 
However, achieving balance is difficult 
for the others. Hence, each computer 
in Figure 3 has two graphs: the left one 
has multiply-add balance as the top 
ceiling and is used for Lattice-Boltz-
mann Magnetohydrodynamics (LB-
MHD), Stencil, and 3D FFT; the right 
one has multiply-add as the bottom 
ceiling and is used for SpMV. Since the 
T2+ lacks a fused multiply-add instruc-
tion nor can it simultaneously issue 
multiplies and adds, Figure 4 shows a 
single roofline for the four kernels on 
the T2+ without the multiply-add bal-
ance ceiling. 

The Intel Xeon has the highest peak 
double-precision performance of the 
four multicores. However, the Roofline 
model in Figure 3a shows this level of 
performance can be achieved only with 
operational intensities of at least 6.7 
Flops/Byte; in other words Clovertown 
requires 55 floating-point operations 
for every double-precision operand 
(8B) going to DRAM to achieve peak 
performance. This high ratio is due in 
part to the limitation of the front-side 
bus, which also carries the coherency 
traffic that can consume up to half the 
bus bandwidth. Intel includes a snoop 
filter to prevent unnecessary coheren-
cy traffic on the bus. If the working set 
is small enough for the hardware to fil-
ter, the snoop filter nearly doubles the 
delivered memory bandwidth. 

The Opteron X4 has a memory 
controller on chip, its own path to 
667MHz DDR2 DRAM, and separate 
paths for coherency. Figure 3 shows 
that the ridge point in the Roofline 
model is to the left of the Xeon, at an 
operational intensity of 4.4 Flops/Byte. 
The Sun T2+ has the highest memory 
bandwidth so the ridge point is an ex-
ceptionally low operational intensity 
of just 0.33 Flops/Byte. It keeps mul-
tiple memory transfers in flight by us-
ing many threads. The IBM Cell ridge 

Figure 3a–3c: Roofline model for Intel Xeon, AMD Opteron X4, and IBM Cell. 
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“Roofline: An insightful Visual Performance model for multicore Architectures“ (CACM 2009)



How To Measure Workloads

Qualitative approaches 
• Examining source code 
• Analytic models or complexity analysis 
Quantitative tools 
• Software Profilers 
• Hardware performance counters 
• Architecture Simulators 
Qualitative approaches are insufficient, so should 
use quantitative tools and compare 
• Do measurements and models agree?

�27



Software Profilers

Intermittently pause workload and sample state

With enough samples, can get some statistics 
about workload’s behavior

Examples: linux perf, gprof, gperftools, valgrind

(+) Easiest to get going

(+) Great for finding where workload spends 
most of time (hot regions)

(-) Can’t measure too much of microarchitecture
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Hardware Performance Counters

Modern platforms typically contain extra 
hardware to monitor performance events with 
no overhead

Software needs to be configured to read the 
counters and even control what they count

Examples: linux perf, Intel PCM, PAPI, likwid

(-) Can be very hard to use (poorly documented, 
buggy, limited)

(+) Very accurate since measuring actual thing
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Architecture Simulator

Software that simulates architecture of 
interest 

Examples: gem5, sniper, ESESC 

(+) Can change architecture and see 
workload’s sensitivity 

(+) Can measure arbitrary events 

(-) Slow  (but maybe speed up with FireSim) 

(-) Need to verify models needed detail
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Characterization Summary

Iterate on characterization with its user to 
make sure it makes sense (& is useful) 

• Scripting reduces burden to rerun

Memory accesses are a common 
bottleneck, so probably need to optimize

Keep an eye out for locality & parallelism, 
as these are most often exploited by 
accelerators
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