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Motivation for Measuring Workload @

O Lord Kelvin 1883

[ often say that when you can measure what you are speaking
about, and express it in numbers, you know something about it;
but when you cannot measure it, when you cannot express it in
numbers, your knowledge 1s of a meagre and unsatistactory kind; it
may be the beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science, whatever the matter

may be. https://en.wikiquote.org/wiki/William_Thomson

O If going to specialize hardware for workload, better
understand characteristics of workload well

® Need workload properties to exploit for efficiency

® Understand workload’s need for flexibility



Topics for Today @

O Goal: Provide background to appreciate
many of the papers for this course

O Workload characterization considerations
O Types of parallelism

O Memory hierarchy challenges

O Roofline Model

O Workload characterization methods



Challenges Summarizing Workload @

O There are many dimensions to analyze a
workload from, so typically impractical to
measure (or present) all of them

O Need to summarize most relevant results
® \What matters most? (significance)
® How will results be used? (context)

® “Workload has high X" - Relative to what?



Summarizing Sanely

O In addition to qualitative statements, provide
measurements too

O Understand consumers of characterization
® \What do they want to learn from it?

O lterate on characterization with consumer
® Are claims supported by measurements?
® Alternative explanations?

® Other things to measure?

®



General Things to Look For

O Common traits across target workload

® cspecially it different from general
purpose workloads

O Underutilized resources can be scaled
down, or at least hint bottlenecks nearby

O Bottlenecks are a saturated resource that
limits overall performance

(©



Ex: Graph Characterization Workload @
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Ex: Evaluation Platform

O Target Platform
® Dual-socket Intel Ivy Bridge (E5-2667 v2)
® Socket: 8 cores with 25MB L3 cache
® Core: 3.3 GHz 2 threads
® DRAM: 256 GB DDR3-1600

O Hardware pertformance counters

® |ntel Pertormance Counter Monitor (PCM)
e PAP]



Ex: Graph Workloads Are Diverse
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Ex: Graph Workloads Are Diverse @

Need suite, no single
representative workload
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Little's Law

Latency

Parallelism
Latency

Task A

Throughput =

Task B

Little's Law
Parallelism = Latency x Throughput

Space
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Time

O Typically, latency is fixed and want to increase
throughput, so must increase parallelism

O If variance in inputs, Little's Law is for average



Measuring Scalability @

O Scaling (increasing parallel resources), can
be hindered by many factors

O Strong scaling - constant problem size, so
decreasing problem/resource

O Weak scaling - constant problem/resource,
so increasing problem size

O Caveat: When looking at scaling curves, ask
what is relative to? Absolute performance
matters more than linear speedup curves.



Example Scalability Measurements @

Strong Scaling Weak Scaling
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O Direction-optimizing implementation slows

down when problem not big enough

O Despite non-linear scaling, still faster



Types of Parallelism in Processors @

O Instruction-level Parallelism (ILP)

® instructions are independent, but often from same
“thread”

® ecxample uses: pipelining, superscalar
© Thread-level Parallelism (TLP)
® threads have independent control flow
® ecxample uses: multicore, multithreading
O Data-level Parallelism (DLP)
® data elements are independent, but similar control flow

® example uses: SIMD extensions, vector

O Memory-level Parallelism (MLP)

® memory accesses are independent



Example Parallelism Uses in Skylake
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O ILP - can execute multiple instructions simultaneously

O DLP - vector instructions operate on multiple data elements
O TLP - multiple cores execute simultaneously

O MLP - out-of-order allows multiple memory ops at once



Administrivia

O Reading preferences due 1/10 @ 12PM
O 1st reading summary due 1/11 @ 9AM
O Sign up for Piazza

O Start looking for project partners and
workloads

O Course website

® https://cmpe293-winter19-01.courses.soe.ucsc.edu/



Improving Communication Efficiency

Reduce Accelerate
(move less data) (move data faster)

mprove data reuse e Utilize more bandwidth

mprove data layout * Build more bandwidth

Improve % Save (3?‘!5 Reduce
Y Performance Energy €.  Cost




Communication-centric Perspective @

Reduce Accelerate
(move less data) (move data faster)

* \When is data needed?
 \What is parallelizable?

e What data is needed?
* How to arrange data?

Algorithms

* Memory technology? | | ® Link technology?

e Memory hierarchy? * Topology design?

Architecture



Memory Hierarchy Recap

Processor S Memory

O Memory is “tar” (latency & energy) from CPU

O Locality - property that some data is more
ikely to be accessed than other data

O Use cache to hold subset of data “closer”
that is likely to be accessed (exploits locality)



Types of Locality

O Temporal Locality - likely to reuse data that
has been accessed

O Spatial Locality - likely to use data near data
that has been accessed

O Example access pattern: 10, 10,0, 1,2, 11
® (10) has temporal locality

® (0-2)and (10-11) have spatial locality



Single-Core Memory Bandwidth
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Single-Core Memory Bandwidth
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Single-Core Memory Bandwidth

Achieved memory bandwidth
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Processors Design for Spatial Locality @

O Cache lines/blocks are typically far larger
than a single word (64B vs 4B)

O Hardware prefetchers try to predict
memory access patterns and bring data
automatically (in advance) to cache

® Prefetchers excel at streaming access
patterns but struggle with “random”

© DRAM row hit - can save time and energy it
requested page already open



Streaming Benefit Decreases w/ MLP @
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Types of Wasteful Communication

000000

® re-load previously accessed data

Overfetch
O poor spatially locality m

® transfer unnecessary data

Refetch
O poor temporal locality

Underfetch

O poor request parallelism ' ' ' '

® transfer bandwidth underutilized



Peer Instruction

O Suppose you have a video decoder capable of
playing 4K @ 60Hz, and you need to upgrade it

to handle 8K @ 120 Hz. Whic
accelerator optimizations wil
each)

N of the fo

work? (Y/

lowing

N for

® 1)Halve latency & quadruple parallelism

2) Reduce latency by 8x

® 3)Increase parallelism by 8x

O Process: solve individually, vote individually, talk

to neighbor, agree on answer, vote as pairs



Roofline Model @
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O Visual way to understand how close
workload is to compute or bandwidth limits



Example Roofline
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"Roofline: An insightful Visual Performance model for multicore Architectures” (CACM 2009)



How To Measure Workloads @

O Qualitative approaches

® Examining source code

® Analytic models or complexity analysis
O Quantitative tools

® Software Profilers

® Hardware performance counters

® Architecture Simulators

O Qualitative approaches are insufficient, so should

use gquantitative tools and compare

® Do measurements and models agree?



Software Profilers

O Intermittently pause workload and sample state

O With enough samples, can get some statistics

about workload’s behavior

O Examples: linux pert, gprof, gper

O (+) Easiest to get going

tools, valgrind

O (+) Great for finding where workload spends

most of time (hot regions)

O (-) Can't measure too much of microarchitecture



Hardware Performance Counters

O Modern platforms typically contain extra

nardware to monitor performance events with
no overhead

O Software needs to be configured to read the
counters and even control what they count

O Examples: linux perf, Intel PCM, PAPI, likwid

O (-) Can be very hard to use (poorly documented,
buggy, limited)

O (+) Very accurate since measuring actual thing



Architecture Simulator

O Software that simulates architecture of
INnterest

O Examples: gem5, sniper, ESESC

O (+) Can change architecture and see
workload’s sensitivity

O (+) Can measure arbitrary events
O (-) Slow (but maybe speed up with FireSim)

O (-) Need to verity models needed detail



Characterization Summary

O lterate on characterization with its user to
make sure it makes sense (& is useful)

® Scripting reduces burden to rerun

O Memory accesses are a common
bottleneck, so probably need to optimize

O Keep an eye out for locality & parallelism,
as these are most often exploited by
accelerators

D



