Foundational Lecture:
Workload Properties, Roofline
Model, and Measurements

Scott Beamer
sbeamer@ucsc.edu

1/9/19

University of California, Santa Cruz
CMPE 293: Programmable Hardware Accelerators

https://cmpe?293-winter19-01.courses.soe.ucsc.edu

https://cmpe293-winter19-01.courses.soe.ucsc.edu

Motivation for Measuring Workload @

O Lord Kelvin 1883

[often say that when you can measure what you are speaking
about, and express it in numbers, you know something about it;
but when you cannot measure it, when you cannot express it in
numbers, your knowledge 1s of a meagre and unsatistactory kind; it
may be the beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science, whatever the matter

may be. https://en.wikiquote.org/wiki/William_Thomson

O If going to specialize hardware for workload, better
understand characteristics of workload well

® Need workload properties to exploit for efficiency

® Understand workload’s need for flexibility

Topics for Today @

O Goal: Provide background to appreciate
many of the papers for this course

O Workload characterization considerations
O Types of parallelism

O Memory hierarchy challenges

O Roofline Model

O Workload characterization methods

Challenges Summarizing Workload @

O There are many dimensions to analyze a
workload from, so typically impractical to
measure (or present) all of them

O Need to summarize most relevant results
® \What matters most? (significance)
® How will results be used? (context)

® “Workload has high X" - Relative to what?

Summarizing Sanely

O In addition to qualitative statements, provide
measurements too

O Understand consumers of characterization
® \What do they want to learn from it?

O lterate on characterization with consumer
® Are claims supported by measurements?
® Alternative explanations?

® Other things to measure?

®

General Things to Look For

O Common traits across target workload

® cspecially it different from general
purpose workloads

O Underutilized resources can be scaled
down, or at least hint bottlenecks nearby

O Bottlenecks are a saturated resource that
limits overall performance

(©

Ex: Graph Characterization Workload @

"GAP 2% Ligra

> N %

O

c

-

ﬁ Breadth-First Single-Source Connected Betweenness PageRank

Search (BFS) Shortest Paths Components Centrality (PR)

(SSSP) (CC) (BC)
MV“W}M{ i

% V v\‘n& Q‘A‘ e

6 Roads Kronnecker Uniform Twitter

of USA Synthetic Crawl Random

Ex: Evaluation Platform

O Target Platform
® Dual-socket Intel Ivy Bridge (E5-2667 v2)
® Socket: 8 cores with 25MB L3 cache
® Core: 3.3 GHz 2 threads
® DRAM: 256 GB DDR3-1600

O Hardware pertformance counters

® |ntel Pertormance Counter Monitor (PCM)
e PAP]

Ex: Graph Workloads Are Diverse

<> [[| I I
— ' Graph
X 25b rap _
-] ® kron
% 20 road |
5 web
- 1.5 twitter |-
% uniform
siobgey oo :
O
o
B 0o 70" T Oy By -
-
T A

0.0 | | | | |

0 2 4 6 8 10

Memory Requests Outstanding (10 max)

Ex: Graph Workloads Are Diverse @

Need suite, no single
representative workload

VvV twitter i

Only few workloads near
memory bandwidth limit

ool >~~~
0 2 4 6 8
Memory Requests Outstanding (10 max)

Little's Law

Latency

Parallelism
Latency

Task A

Throughput =

Task B

Little's Law
Parallelism = Latency x Throughput

Space
| I-
: WHIEIIEZEE !

Time

O Typically, latency is fixed and want to increase
throughput, so must increase parallelism

O If variance in inputs, Little's Law is for average

Measuring Scalability @

O Scaling (increasing parallel resources), can
be hindered by many factors

O Strong scaling - constant problem size, so
decreasing problem/resource

O Weak scaling - constant problem/resource,
so increasing problem size

O Caveat: When looking at scaling curves, ask
what is relative to? Absolute performance
matters more than linear speedup curves.

Example Scalability Measurements @

Strong Scaling Weak Scaling

120 200
@—@® Direction-optimizing
N 100 N] . O—0O Top-down
0 w 180" S
i 80| i
|_
o ©
£ 60f LA00F e T -
o’ e
- <
o o
E 40 | 8
$ D OO0 @7
20 o—— & o o
O O o O
CI)]]]] O Q I I I I
30 31 32 33 34
2916 o776 P 11664 23104 46656 (2916) (5776) (11664) (23104) (46656)
rocessors
Scale
9—@ Direction-optimizing (32) O— Top-down (32) (Processors)

@®—® Direction-optimizing (30) O—0O Top-down (30)

O Direction-optimizing implementation slows

down when problem not big enough

O Despite non-linear scaling, still faster

Types of Parallelism in Processors @

O Instruction-level Parallelism (ILP)

® instructions are independent, but often from same
“thread”

® ecxample uses: pipelining, superscalar
© Thread-level Parallelism (TLP)
® threads have independent control flow
® ecxample uses: multicore, multithreading
O Data-level Parallelism (DLP)
® data elements are independent, but similar control flow

® example uses: SIMD extensions, vector

O Memory-level Parallelism (MLP)

® memory accesses are independent

Example Parallelism Uses in Skylake

o~ e e -
- < 6 o

Branch Prediction Unit > pop Cache

LD A Ol S EO L O LA e

suffer — b Buffer — & Bufe Allocate/Rename/Retire

In order

Scheduler

Port 4 Port 3 Port 7

Port 2

v

Load/sTA | Load/sTA -T-

Memory Control

g MBL2$ B - —FittBuffers= 2 32KB L1 D$

Intel, Hot Chips 2017

O ILP - can execute multiple instructions simultaneously

O DLP - vector instructions operate on multiple data elements
O TLP - multiple cores execute simultaneously

O MLP - out-of-order allows multiple memory ops at once

Administrivia

O Reading preferences due 1/10 @ 12PM
O 1st reading summary due 1/11 @ 9AM
O Sign up for Piazza

O Start looking for project partners and
workloads

O Course website

® https://cmpe293-winter19-01.courses.soe.ucsc.edu/

Improving Communication Efficiency

Reduce Accelerate
(move less data) (move data faster)

mprove data reuse e Utilize more bandwidth

mprove data layout * Build more bandwidth

Improve % Save (3?‘!5 Reduce
Y Performance Energy €. Cost

Communication-centric Perspective @

Reduce Accelerate
(move less data) (move data faster)

* \When is data needed?
 \What is parallelizable?

e What data is needed?
* How to arrange data?

Algorithms

* Memory technology? | | ® Link technology?

e Memory hierarchy? * Topology design?

Architecture

Memory Hierarchy Recap

Processor S Memory

O Memory is “tar” (latency & energy) from CPU

O Locality - property that some data is more
ikely to be accessed than other data

O Use cache to hold subset of data “closer”
that is likely to be accessed (exploits locality)

Types of Locality

O Temporal Locality - likely to reuse data that
has been accessed

O Spatial Locality - likely to use data near data
that has been accessed

O Example access pattern: 10, 10,0, 1,2, 11
® (10) has temporal locality

® (0-2)and (10-11) have spatial locality

Single-Core Memory Bandwidth

100F

80|

60

ffective MLP

40}

201

Memory Requests (M) / Second

: : : : ®&—® 1] thread
0 | | | | | 10

2 4 6 8 10 12
Application MLP / Thread

1 core (lvy Bridge)

Single-Core Memory Bandwidth

©
(-
S 100
Q
(Vp)
—~ 80 N
—
E =
(V)]
*gaj 60 %
= @)
o Q@
o 40 =
o
@) : : : : .
= 20 A2 S RRREERRTRIETRPRID | ®—® 1thread [{?
= - | ©—© 2 threads
0 | | | | | mll g
2 4 6 8 10 12

Application MLP / Thread
1 core (lvy Bridge)

Single-Core Memory Bandwidth

Achieved memory bandwidth

_~

Outstanding memory requests

< : : : f
= ; | | - | ©—0O 2 threads

0 | | | | | Ny
2 4 6 8 10 12
Application MLP / Thread

1 core (lvy Bridge)

Processors Design for Spatial Locality @

O Cache lines/blocks are typically far larger
than a single word (64B vs 4B)

O Hardware prefetchers try to predict
memory access patterns and bring data
automatically (in advance) to cache

® Prefetchers excel at streaming access
patterns but struggle with “random”

© DRAM row hit - can save time and energy it
requested page already open

Streaming Benefit Decreases w/ MLP @

Hardware pretetcher
120 |mproves BW for streamlnq

by | mcreasmg parallellsm | |

2 e e e o—0 _
— 100
0p)
O
C B0 g T -
2
Q
oo 60 /T -
o
> 4006 _C :
= O
GE) >0l o ©—© Random 1thread |
= O ®—® Streaming 1 thread

O | | | | | |

2 4 6 8 10 12

MLP / thread
1 core (Sandy Bridge)

Types of Wasteful Communication

000000

® re-load previously accessed data

Overfetch
O poor spatially locality m

® transfer unnecessary data

Refetch
O poor temporal locality

Underfetch

O poor request parallelism ' ' ' '

® transfer bandwidth underutilized

Peer Instruction

O Suppose you have a video decoder capable of
playing 4K @ 60Hz, and you need to upgrade it

to handle 8K @ 120 Hz. Whic
accelerator optimizations wil
each)

N of the fo

work? (Y/

lowing

N for

® 1)Halve latency & quadruple parallelism

2) Reduce latency by 8x

® 3)Increase parallelism by 8x

O Process: solve individually, vote individually, talk

to neighbor, agree on answer, vote as pairs

Roofline Model @

Performance [GFLOPS]
Bound based on bandwidth ,-

4 - 7 Bound based on peak performance

1 ! APP,
AP,
1/2 -
1/4 -
https://en.wikipedia.org/wiki/Roofline_model
| | 1 | | 1 1 1 | 1 1 1 1 || ||)
1/4 1/2 1 2 4 8 16 32 64 128 256 512 Operational Intensity [FLOPS/byte]

O Visual way to understand how close
workload is to compute or bandwidth limits

Example Roofline

(b) Intel Xeon (Clovertown)
128

peak DP

32

+ILP
) 16
@
8‘ +balanced
= g mul/add
o
TLP only
4
2
1
1/16 1/8 1/4 1/2 1 2 4 16

Operational Intensity (Flops/Byte)

"Roofline: An insightful Visual Performance model for multicore Architectures” (CACM 2009)

How To Measure Workloads @

O Qualitative approaches

® Examining source code

® Analytic models or complexity analysis
O Quantitative tools

® Software Profilers

® Hardware performance counters

® Architecture Simulators

O Qualitative approaches are insufficient, so should

use gquantitative tools and compare

® Do measurements and models agree?

Software Profilers

O Intermittently pause workload and sample state

O With enough samples, can get some statistics

about workload’s behavior

O Examples: linux pert, gprof, gper

O (+) Easiest to get going

tools, valgrind

O (+) Great for finding where workload spends

most of time (hot regions)

O (-) Can't measure too much of microarchitecture

Hardware Performance Counters

O Modern platforms typically contain extra

nardware to monitor performance events with
no overhead

O Software needs to be configured to read the
counters and even control what they count

O Examples: linux perf, Intel PCM, PAPI, likwid

O (-) Can be very hard to use (poorly documented,
buggy, limited)

O (+) Very accurate since measuring actual thing

Architecture Simulator

O Software that simulates architecture of
INnterest

O Examples: gem5, sniper, ESESC

O (+) Can change architecture and see
workload’s sensitivity

O (+) Can measure arbitrary events
O (-) Slow (but maybe speed up with FireSim)

O (-) Need to verity models needed detail

Characterization Summary

O lterate on characterization with its user to
make sure it makes sense (& is useful)

® Scripting reduces burden to rerun

O Memory accesses are a common
bottleneck, so probably need to optimize

O Keep an eye out for locality & parallelism,
as these are most often exploited by
accelerators

D

